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Abstract

The goal of this thesis is to define the homotopy colimit of a functor F : D→ C, which we
want to be a the closest, homotopy invariant, approximation to the colimit functor. We do
this by introducing model categories and simplicial model categories. These are categories
with additional structure making them particularly nice for doing homotopy theory in.
Furthermore, we give the homotopy theoretic results needed for proving homotopy invariance
of the homotopy colimit.

The definition of the homotopy colimit of F , is given as the geometric realization of a
particular simplicial object, the two sided simplicial bar. Following the exposition in [Rie14]
we construct this two sided simplicial bar and the bar construction. We then prove both
categorical and homotopical results about this construction. Finally, we prove that if M is a
simplicial model category, then the colimit functor colimD : MD →M admits a left derived
functor. We then define the homotopy colimit to be hocolimD F := L colimD F .
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1 Introduction

Classical category theory gives a well behaved definition of colimits. Within this framework we
are able to prove that colimits are unique up to canonical isomorphism and a natural transfor-
mation between diagrams induces a unique map between the colimits of these diagrams.

However, some categories come with homotopical data of interest. One example is the cate-
gory of topological spaces Top, where one often considers spaces not only up to homeomorphism
but also (weak) homotopy equivalence and many of theorems in algebraic topology only concern
the homotopy type of a space. This puts us at crossroads, since colimits are not necessarily
homotopically well behaved. One classic counter-example is to consider the diagram

D2 S1 D2

of spaces. The colimit of this diagram is S2. Now if one considers the following natural trans-
formation of diagrams

D2 S1 D2

∗ S1 ∗

idS1

it is well known that all the vertical arrows are homotopy equivalences. The colimit of the
bottom row is the one point space ∗. However the induced map S2 → ∗ is not a homotopy
equivalence.

In this thesis we start by presenting Quillens classical theory of model categories, which are
homotopically well behaved categories. Many of the ideas presented carry over to the framework
of homotopical categories. Then we turn our interest towards simplicial categories and, in order
to define simplicial model categories. Then we continue to set up the framework for homotopy
colimits by introducing homotopical categories, homotopical functors and derived functors. In
particular we give sufficient conditions for derived functors to exist.

It turns out that simplicial model categories are categories in which we always have a good
model for the left derived functor of colim. We define this to be the homotopy colimit. We will
spend Section 7 proving this.

1.1 Prerequisites

This thesis is written with an introductory background in algebraic topology and homological
algebra. A strong background in classical category theory is assumed - [Mac13] is a good reference
for this. Additionally, [Mac13] touches on symmetric monoidal categories but only very briefly
on enriched category theory. As this thesis only concerns itself with categories enriched in the
category of simplicial sets sSet the background required is minimum, hence the presentation
given in my work under supervision of Thomas Wasserman in [Nie19] suffices. Finally this
thesis relies heavily on computations using coend calculus - here one classical reference besides
[Mac13] is [Lor15]. We also provide an appendix on ends and coends, which provides the
necessary background for the arguments given in this thesis.

1.2 Acknowledgements

I wish to extend my thanks to my supervisor Piotr Pstrągowski for his patience and guidance
and will to see through this, at first, vaguely defined idea for my thesis. Additionally, I would like
to thank him for encouraging my curiosity whenever it got me sidetracked during out meetings.

I also wish to extend my thanks to Thomas Wasserman for his academic guidance during
most of my time as a student at UCPH. Both have truly impacted my view on mathematics.
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I would also like to thanks those of my friends whose thorough reading and feedback helped
me correct mistakes and writing errors.

Finally, I would like to thank the students and employees at the Math department at UCPH,
whom I hope to return to after the summer. Mathematics really is best done as a group
discussion, not a monologue.

Terminology and Notation

This section will introduce the basic notions used in this thesis.

Definition 1.1. Let � denote the category of finite nonempty linearly ordered sets of the form

[n] = {0, 1, . . . , n}

and order preserving maps between them. A simplicial set is an object in the functor category
sSet := Set�op and in general for a category C a simplicial object in C is an object in the functor
category

sC := C�op .

We will always assume that any category C is locally small. For any pair of objects X,Y ∈ C

we will denote the set of maps from X to Y by C(X,Y ). To emphasize the difference we will
denote the mapping space, from X to Y , by map(X,Y ), when working in an simplicial category.
Finally we will denote an adjunction

F : C � : D : G,

with the convention that we always write the left adjoint on the left.
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2 Kan Extensions

Definition 2.1. Let F : C → E and K : C → D be functors. A left Kan extension of F along
K is a functor LanK F : D → E along with a natural transformation η : F ⇒ LanK FK such
that for any other functor G : D→ E with a natural transformation α : F ⇒ GK there exists a
unique natural transformation λ : LanK F ⇒ G such that α = λKη.

Remark 2.2. The universal property is encoded in the following equality:

C E

D

F

K
LanK F

G

∃!λ

η

=

C E

D.

F

K
α

G

Additionally it is worth mentioning that this universal property is encoded in an bijection

ED (LanK F,G) ∼= EC (F,GK) .

If we fix K and the left Kan extension exists for all functors F ∈ EC this extends to an adjunction

LanK : EC � ED : K∗.

Theorem 2.3 ([Mac13]). Suppose C is a small category, D is a category and E is a cocomplete
category. Then the left Kan extension of any functor F : C → E along a functor K : C → D

exists and can be computed at an object d ∈ D by the following formulae:

LanK F (d) =

∫ c∈C
D(K(c), d) · F (c)

= colim
(
K/d

U−→ C
F−→ E

)
= colim

c∈C
K(c)→d

F (c)

Here "·" is the tensor over Set and K/d is the comma category K over d ∈ D.

Remark 2.4. There are dual results for right Kan extensions. The details of these are omitted.

Definition 2.5. A functor L : E → F is said to preserve a left Kan extensions (LanK F, η) if
the whiskered composition (LLanK F,Lη) is the left Kan extension of LF along K.

Proposition 2.6. Left adjoints preserve left Kan extensions.

Proof. Observe that

FD(LLanK F,H) ∼= ED(LanK F,RH) ∼= EC(F,RHK) ∼= FC(LF,HK).

Keeping track of 1LLanK F when going through these isomorphisms yields Lη.

Proposition 2.7. Suppose ∗ : C → 1 denotes the unique functor into the terminal category 1.
Then the left Kan extension (provided it exists) of any functor F : C→ D along ∗ is the colimit
of F .

Proof. We have a natural transformation η : F ⇒ Lan∗ F∗. Let ∆ denote the constant functor
D→ DC. Suppose we have a natural transformation α : F ⇒ ∆(x) for x ∈ D. Then this defines
a functor G : 1 → D and a natural transformation α′ : F ⇒ G∗. Then there exists a unique
natural transformation η : Lan∗ F ⇒ x.
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Remark 2.8. Suppose C is small and D is cocomplete. Then Theorem 2.3 implies that

colimF ∼= Lan∗ F (∗) =

∫ c∈C
1(∗(c), ∗) · F (c) ∼=

∫ c∈C
{∗} · F (c) ∼=

∫ c∈C
F (c)

The above is also proven in [Mac13]. We will now prove a classical result using the machinery
of coend calculus and Kan extensions.

Theorem 2.9 (Yoneda lemma). For any functor F : C → Set and c ∈ C there exists a natural
isomorphism

SetC (C (c,−), F ) ∼= F (c).

Proof. It is clear that F (c) ∼= Ran1C F (c), then by Theorem 2.3

F (c) ∼=
∫
c′∈C

F (c′)C(c,c′) ∼=
∫
c′∈C

Set(C(c, c′), F (c′)) ∼= SetC(C(c,−), F ),

where the third isomorphism is Proposition A.4.

Remark 2.10. Similarly we get that

F (c) ∼=
∫ c′∈C

C(c′, c) · F (c′).

This is known as the coYoneda lemma. The parameter theorem for coends [Mac13, Thm. IX.7.2]
establishes that

F ∼=
∫ c∈C

C(c,−) · F (c)

which implies the density theorem (that all presheaves are colimits of representable presheaves).
Here one needs to notice that the tensor · : Set×Set→ Set is symmetric.

Theorem 2.11. Suppose that E is cocomplete, F : C→ E and K : C→ D is fully faithful. Then

LanK F ◦K ∼= F.

Proof. By Theorem 2.3 we see that for d ∈ D

LanK FK(d) =

∫ c∈C
D(K(c),K(d)) · F (c) ∼=

∫ c∈C
C(c, d) · F (c) ∼= F (d).

2.1 Defining the Geometric Realization functor

We will know study a construction which when applied to the category of simplicial sets sSet
yields a lot of useful results. Fix a small category C and a cocomplete category E. We will study
left Kan extensions along the Yoneda embedding y : C→ PSh(C). If F : C→ E is a functor, then
consider L := Lany F making the diagram

PSh(C)

C E

Ly

F

commute up to natural isomorphism. Now for P ∈ PSh (C) we get

L(P ) =

∫ c∈C
PSh(C)(C(−, c), P ) · F (c) ∼=

∫ c∈C
P (c) · F (c).
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Additionally the functor R : E→ PSh(C) with

R(e) = E(F (−), e)

is right adjoint to L. Since if X ∈ PSh(C) and e ∈ E then

SetC
op

(X,R(e)) ∼=
∫
c∈C

Set(X(c), R(e)(c))

∼=
∫
c∈C

Set(X(c),E(F (c), e))

∼=
∫
c∈C

E(X(c) · F (c), e)

∼=
∫
c∈C

E
(

SetC
op

(C(−, c), X) · F (c), e
)

∼= E

(∫ c∈C
SetC

op
(C(−, c), X) · F (c), e

)
∼= E(L(X), e).

In particular we get an adjoint equivalence of categories

Fun(C,E) ' Funcocont(PShC,E),

where the right category denotes the subcategory of cocontinouos functors. Now if we specialize
to the case with C = � and E = Top we define the geometric realization to be the functor

| − | : sSet→ Top

defined as the left Kan extension of the functor ∆: � → Top, with ∆(n) = ∆n (the standard
n-simplex) along the Yoneda embedding. Then the earlier construction shows us that for some
simplicial set X•,

|X•| ∼=
∫ n∈�

Xn ·∆n.

Remark 2.12. We denote the right adjoint of | − | as Sing(−). This is easily verified to be
naturally isomorphic to the usual singular set functor.

Remark 2.13. It also follows that from this construction that any presheaf category is cartesian
closed.
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3 Model Categories

Quillen developed the theory of model categories in his famous papers Homotopical Algebra
[Qui06], to capture the notion of a good category to do homotopy theory in. In this section
we will introduce the notion of model categories, and develop it sufficiently to apply the theory
in this thesis. We will also give the example of the Quillen model structure on the category of
simplicial sets sSet. This is done because we intend to later define Simplicial model categories.
Finally we give a beautiful proof of Ken Brown’s lemma.

Definition 3.1. Amodel category is a categoryM equipped with three classes of maps (W, cof,fib)
called weak equivalences, cofibrations and fibrations satisfying that

M1: (Limit axiom) The category is complete and cocomplete.

M2: (2-out-of-3) If f : X → Y and g : Y → Z are maps in M and two out of f, g or gf are weak
equivalences, then so is the third.

M3: (Retract axiom) If f is a retract of g in the category of maps in M and g is a weak
equivalence / cofibration / fibration then so is f .

M4: (Lifting axiom) If

A X

B Y

i pl

is a commutative square, then l exists if

1. i is a cofibration and p is a fibration and weak equivalence.

2. i is a cofibration and a weak equivalence and p is a fibration.

M5: (Factorization axiom) Every map f factors functorially as

1. A cofibration followed by a fibration which is also a weak equivalence.

2. A cofibration which is also a weak equivalence followed by a fibration.

Definition 3.2. Let M be a model category. If f : X → Y is a map in M then f is a trivial
cofibration if f is a fibration and a weak equivalence. Additionally f is a trivial fibration if f is
a fibration and a weak equivalence.

Definition 3.3. Let M be a model category with X ∈ M. We say that X is cofibrant if the
unique map ∅ → X is a cofibration. Dually X is fibrant if X → ∗ is a fibration.

We will assume that the reader is familiar with classical results similar to the characterization
of for instance trivial fibrations in term of lifting properties. How cofibrations are closed under
coproducts and how a functorial factorization system can be used to construct a (co)fibrant
replacement functor.

Remark 3.4. If M is a model category, then Mop is a model category in the obvious way,
namely by taking W op = W , fibop = cof and cofop = fib.

Example 3.5 (Theorem 11.1 [GJ09]). The category sSet has a model structure called the Quillen
model structure, where a map f : X → Y is a
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1. weak equivalence if the map between geometric realizations

|f | : |X| → |Y |

is a weak homotopy equivalence of topological spaces,

2. a fibration if it is a Kan fibration, that is, if it has the right light property with respect to
all horn inclusions, that is, for all n and 0 ≤ i ≤ n the diagram

Λni X

∆n Y

f

admits a lift in form of the dotted arrow,

3. a cofibration if it is a monomorphism.

This following result will be usefull later.

Lemma 3.6. If p : X → Y is trivial Kan fibration then p is levelwise surjective.

Proof. Since every simplicial set is cofibrant, any lifting problem

∅ X

∆n Y

p

has a solution.

We will now generalize the notion of homotopy to the setting to model categories.

Definition 3.7. Let M be a model category and let f, g : X → Y be maps in M.

1. A cylinder object for X is a factorization of the codiagonal map

X
∐
X Cyl(X) X

i0
∐
i1 p

such that i0
∐
i1 is a cofibration and p is weak equivalence.

2. A left homotopy from f to g is a cylinder object on X and a map H : Cyl(X) → Y such
that Hi0 = f and Hi1 = g. We denote this f l∼ g.

3. A path object for Y is a factorization of the diagonal map

Y Path(Y ) Y × Ys p0×p1

such that s is a weak equivalence and p0 × p1 is fibration.

4. A right homotopy from f to g is a path object for Y and a map H : X → Path(Y ) such
that p0H = f and p1H = g. We denote this f r∼ g.

5. If f and g are both left and right homotopic we say that f and g are homotopic. We
denote this f ∼ g.

6. A map f : X → Y is a homotopy equivalence if there exists a map g : Y → X such that
gf ∼ idX and idY ∼ fg.
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Definition 3.8. The homotopy category HoM of a model category M is the formal localization
of M at W. That is the universal category with a functor M → HoM which inverts all weak
equivalences.

The following theorem is a generalization of a well known theorem from algebraic topology
to the setting of model categories.

Theorem 3.9 (Whitehead theorem). Let M be a model category. If X,Y ∈ M are fibrant-
cofibrant. Then f : X → Y is a weak equivalence if and only if it is a homotopy equivalence.

Proof. This is [Hir09, Thm 7.8.5] and [Hir09, Thm. 7.5.10].

These results are the backbone of giving a good description of the homotopy category of
a model category as the category with the same objects and homotopy classes of maps, be-
tween fibrant-cofibrant replacements of those same objects. In particular this implies that the
homotopy category of a locally small model category is again locally small.

Theorem 3.10 (Ken Brown’s lemma). Let M,N be model categories. If F : M→ N is a functor
that takes trivial cofibrations between cofibrant object in M to weak equivalences in N, then F
preserves weak equivalences between cofibrant objects.

Proof. Let f : A → B be a weak equivalence between cofibrant objects. Since the class of
cofibrations are closed under pushouts the inclusions into the coproduct are cofibrations. Now
factor the map

A
∐

B
f
∐

idB−−−−−→ B

into a cofibration A
∐
B

q−→ C followed by a trivial fibration C
p−→ B. Then qiA and qiB are

cofibrations. In fact these are trivial cofibrations since p(qiA) = f and p(qiB) = idB are weak
equivalances then this follows by the 2-out-of-3 property of weak equivalences. Thus F (qiA)
and F (qiB) are weak equivalences in N. Now idF (B) = F (idB) = F (pqiB) implies that F (p) is
a weak equivalence by 2-out-of-3. Therefor, 2-out-of-3 implies that F (pqiA) = F (f) is a weak
equivalence.

Theorem 3.11. Let M,N be model categories. If F : M � N : G is an adjunction then F
preserves cofibrations and trivial cofibrations if and only if G preserves fibrations and trivial
fibrations.

Proof. We will show that F preserves cofibrations if and only if G preserves trivial fibrations.
Suppose j : X → Y is a cofibration in M then F (j) is a cofibration in N if and only if F (j) has
the left lifting property with respect to all trivial fibrations q in N. Since F and G are adjoint
this is true if and only j has the left lifting property with respect to G(q). This is the case if
and only if G(q) is a trivial fibration.
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4 Simplicial Model Categories

In order to construct the model for homotopy colimits given in this thesis we need the additional
structure of a simplicial model structure on M. We therefor start by discussing simplicial
categories and then turn our attention to simplicial model categories.

4.1 Simplicial categories

Recall that a simplicially enriched category (simplicial category for short) is a category enriched
in (sSet,×, ∗). It is easy to see that the data of a simplicial categoryM is equivalent to a category
M satisfying that for each pair of objects X,Y ∈M there exist a simplicial set map(X,Y ) and
maps of simplicial sets

map(Y, Z)×map(X,Y )→ map(X,Z), ∗ → map(X,X)

satisfying associativity and unitality in the appropriate sense such that map(X,Y )0
∼= HomM(X,Y ).

This isomorphism should respect composition.

Theorem 4.1. If M is a cocomplete category then sM can be simplicially enriched and tensored
in a canonical manner. If additionally M is complete then M is also cotensored over sSet and
for any simplicial set K ∈ sSet we obtain an adjunction

K ⊗ (−) : sM � sM : (−)K

Proof. For K ∈ sSet and X ∈ sM we define the simplicial tensor K ⊗X on n-simplicies as

(K ⊗X)n := Kn ·Xn

with the obvious functoriality in [n] ∈ �op. We use this to define map(X,Y )

map(X,Y )n := sM(∆n ⊗X,Y ),

with face and degeneracy maps induced by the maps in �. One easily checks that this defines a
simplicial structure.

We will now prove that sM is tensored with respect to these constructions. We will proceed
by proving this at the zeroth level and then reducing the general case to this. The following
isomorphisms, where we make use of the density theorem, establish the first part:

sM(K ⊗X,Y ) ∼= sM

(
( colim
∆n→K

∆n)⊗X,Y
)

∼= sM( colim
∆n→K

(∆n ⊗X) , Y )

∼= lim
∆n→K

sM(∆n ⊗X,Y )

∼= lim
∆n→K

map(X,Y )n

∼= lim
∆n→K

sSet(∆n,map(X,Y ))

∼= sSet( colim
∆n→K

∆n,map(X,Y ))

∼= sSet(K,map(X,Y )).

We now show that the n-simplicies of map(K ⊗X,Y ) and map(K,map(X,Y )) coincide.

map(K ⊗X,Y )n ∼= sSet(∆n,map(K ⊗X,Y ))
∼= sM(∆n ⊗ (K ⊗X), Y )
∼= sM ((∆n ×K)⊗X,Y )
∼= sSet(∆n ×K,map(X,Y ))
∼= sSet(∆n,map(K,map(X,Y )))
∼= map(K,map(X,Y ))n
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Now, suppose M is also complete, so that M is cotensored over Set with MS =
∏
SM . Let

(XK)n := XKn
n one argues that this defines a cotensoring in an argument dual to the above. To

see the adjunction consider the isomorphisms

sM(X,Y K) ∼=
∫
n∈�op

M(Xn, (Y
K)n)

∼=
∫
n∈�op

M

(
Xn,

∏
Kn

Yn

)

∼=
∫
n∈�op

M

(∐
Kn

Xn, Yn

)
∼=
∫
n∈�op

M ((K ⊗X)n, Yn)

∼= sM (K ⊗X,Y )

To make the exposition more clear we did not show that −⊗X : sSet→ sM commutes with
colimits or that for simplicial sets K,K ′ ∈ sSet it holds that

K ⊗ (K ′ ⊗X) ∼= (K ×K ′)⊗X

for any simplicial object X ∈ sM. We will prove this now.

Lemma 4.2. The functor −⊗X : sSet→ sM commutes with colimits for all X ∈ sM.

Proof. Since colimits in sM is computed levelwise, it is sufficient to see that − ⊗X commutes
with colimits for each [n] ∈ �op. For a diagram

F : D→ sSet,

we see that

M(((colim
d∈D

F (d))⊗X)n, Y ) = M

(
(colim
d∈D

F (d)) ·Xn, Y

)
∼= Set(colim

d∈D
F (d),M(Xn, Y ))

∼= lim
d∈D

Set(F (d),M(Xn, Y ))

∼= lim
d∈D

M(F (d) ·Xn, Y )

∼= M(colim
d∈D

(F (d)⊗X)n, Y )

completing the proof.

Lemma 4.3. For simplicial sets K,K ′ ∈ sSet and a simplicial object X ∈ sM we have

K ⊗
(
K ′ ⊗X

) ∼= (K ×K ′)⊗X.
Proof. This is clear from the definitions.

Remark 4.4. When M = sSet this recovers the usual enrichment of sSet and gives a construc-
tion of the internal hom of sSet.

Definition 4.5. A simplicial model category is a simplicially enriched category M that is also
a model category and such that

13



SM1 M is tensored and cotensored in simplicial sets.

SM2 If i : A→ B is a cofibration in M and p : X → Y is a fibration then

map(B,X)
i∗×p∗−−−→ map(A,X)×map(A,Y ) map(B, Y )

is a Kan fibration, which moreover is trivial whenever p or i is a weak equivalence.

Example 4.6. The category of simplicial sets sSet with the Quillen model structure is a simplicial
model category, see [GJ09, Theorem 11.5] and Remark 2.13

Remark 4.7. Note that SM: 2 implies that map(A,−) preserves (trivial) fibrations for any
fibrant object and map(−, B) takes (trivial) cofibrations to (trivial) fibrations if B is cofibrant.

Proposition 4.8. Let M be a simplicial model category. If K ∈ sSet and i : A→ B in M is a
cofibration then K ⊗ i : K ⊗A→ K ⊗B is a cofibration.

Proof. Let p : X → Y be a trivial fibration, by (SM2)

map(B,X)
i∗×p∗−−−→ map(A,X)×map(A,Y ) map(B, Y )

is trivial Kan fibration. Since K is cofibrant

map(K,map(B,X))
(i∗×p∗)∗−−−−−→ map(K,map(A,X)×map(A,Y ) map(B, Y ))

is a trivial Kan fibration. Since M is tensored we have a natural isomorphism

map(K ⊗X,Y ) ∼= map(K,map(X,Y ))

Applying this we obtain isomorphisms such that

map(K,map(B,X)) map(K,map(A,X)×map(A,Y ) map(B, Y ))

map(K ⊗B,X) map(K ⊗A,X)×map(K⊗A,Y ) map(K ⊗B, Y )

∼=

(i∗×p∗)∗

∼=
(K⊗i)∗×p∗

commutes. Thus (K ⊗ i)∗ × p∗ is trivial Kan fibration, which by Lemma 3.6 is surjective on
0-simplicies. This shows that K ⊗ i has the left lifting property with respect to any trivial
fibration p, hence K ⊗ i is a cofibration.

4.2 Geometric realization and singular complex

The goal this section is to introduce the geometric realization of simplicial object X ∈ sM in
a simplicial category which is tensored. Furthere more if M is also cotensored over simplicial
sets we will construct an right adjoint the geometric realization functor, which we will call the
singular complex.

Definition 4.9. Let M be a simplicially enriched category, which is tensored and cocomplete.
If X• ∈ sM is a simplicial object in M, then the geometric realization of X is defined to be the
coend

|X•| :=
∫ n∈�

∆n ⊗Xn,

where ∆• is the standard cosimplicial object given by the Yoneda embedding �
y
↪−→ sSet.

Applying the parameter theorem for coends, see [Mac13, Thm. IX.7.2], this assembles into a
functor

| − | : M�op →M
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Definition 4.10. If M is simplicially enriched and cotensored we define the singular complex
on Y ∈M to be the simplicial object Y ∆• with

(
Y ∆•

)
n

= Y ∆n .

This naturally assembles into a functor (−)∆• .

Proposition 4.11. If M is a simplicially enriched category which is tensored and cotensored,
then we have an adjunction

| − | : sM � M : (−)∆• .

Proof. If X ∈ sM and Y ∈M, then

M(|X|, Y ) = M

(∫ n∈�

∆n ⊗Xn, Y

)
∼=
∫
n∈�

M(∆n ⊗Xn, Y )

∼=
∫
n∈�

M(Xn, Y
∆n

)

∼= sM(X,Y ∆•),

which shows the adjunction.

4.3 Reedy model structure

Given a model category M and a small category D we would like to extend the homotopy theory
of M to MD, such that the weak equivalences of diagrams will be those natural transformations
which are levelwise a weak equivalence. This however is in general difficult, but can always
be done when D has the additional structure of being Reedy (for more discussion see [GJ09,
Ch.VII]). The Reedy model structure will not be discussed in full, we do however need to define
the Reedy model structure on sM and prove homotopical properties of the geometric realization
functor. For this section we fix a model category M.

Definition 4.12. Let X ∈ sM we define the n-th latching object of X to be the object defined
by the colimit:

LnX := colim
[n]→[k]

Xk,

where the indexing category is the opposite category, of the subcategory of [n]/�, with surjective
maps under [n] and such that k < n.

Remark 4.13. When X is a simplicial set, then one can show that that LnX ∼= (Skn−1X)n.
The n-th level of the n − 1-skeletal approximation of X. Which turns out to be the set of
degenerate n-simplicies of X.

Definition 4.14. For X ∈ sM define the n-th matching object of X as

MnX := lim
[k]→[n]

Xk,

where the indexing category is the subcategory of �/[n] with k < n

Remark 4.15. This turns out to be exactly (coskn−1X)n.

This now makes us able to state the Reedy model structure on sM.

Definition 4.16 (VII Def. 2.1 [GJ09]). A map f : X → Y in sM is

1. a Reedy weak equivalence if fn : Xn → Yn is a weak equivalence for all n ≥ 0,
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2. a Reedy fibration if
Xn → Yn ×MnY MnX

is a fibration for all n ≥ 0,

3. a Reedy cofibration if
Xn ∪LnX LnY → Yn

is a cofibration for all n ≥ 0.

we call this structure the Reedy structure on sM.

The culmination of [GJ09, VII Section 2] is the following theorem:

Theorem 4.17 (VII Thm. 2.11 [GJ09]). If M is a model category, then the Reedy structure
defines a model category structure on sM.

We will omit the proof of this theorem, since we are primarily interested in homotopical
properties of the geometric realization functor and not of the homotopy theory of sM. The
following two lemmata will characterize trivial Reedy (co)fibrations and give a sufficient condition
for an object to be (co)fibrant.

Lemma 4.18 (VII Lemma 2.2 [GJ09]). A map f : X → Y in sM is

1. a trivial Reedy fibration if and only if

Xn → Yn ×MnY MnX

is a trivial fibration for all n ≥ 0

2. a trivial Reedy cofibration if and only if

Xn ∪LnX LnY → Yn

is a trivial cofibration for all n ≥ 0.

Remark 4.19. Observe that an object X ∈ sM is Reedy cofibrant if

LnX → Xn

is a cofibration for all n ≥ 0. Dually X is Reedy fibrant if

Xn →MnX

is a fibration for all n ≥ 0.

In order to prove that geometric realization is left Quillen with respect to the Reedy structure
on sM, we will define the generalized matching of a simplicial set K ∈ sSet with a simplicial
object X ∈ sM.

Proposition 4.20 (Prop. VII 1.21 [GJ09]). For a simplicial set K ∈ sSet the functor

K ⊗− : M→ sM

given by taking the constant simplicial object and then tensoring with K admits a right adjoint.
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Proof. Recall that a constant simplicial set A ∈ sSet then sSet(∆n × A, Y ) ∼= Set(A, Yn). This
fact is easily generalized to our situation (for instance by applying coend calculus and the
coYoneda lemma) such that for a constant simplicial object Z ∈ sM we get

sM(∆n ⊗ Z,X) ∼= M(Z,Xn)

for all X ∈ sM.
Now by the following string of isomorphisms we get:

sM(K ⊗ Z,X) ∼= lim
∆n→K

sM(∆n ⊗ Z,X)

∼= lim
∆n→K

M(Z,Xn)

= M(Z, lim
∆n→K

Xn)

Let MKX := lim∆n→K Xn denote the right adjoint.

Remark 4.21. Note that MK− is given by a Kan extension formula and in particular this
definition coincides withDefinition 4.14 in the case where K = ∂∆n. Furthermore for K = ∆n

it is easy to see that M∆nX ∼= Xn.

We will now move towards proving that geometric realization is left Quillen. We start by
proving the dual statement that the singular complex is right Quillen.

Lemma 4.22 (Lemma VII 3.17 [GJ09]). The singular complex functor (−)∆• : M → sM pre-
serves fibrations and trivial fibrations.

Proof. We first show that MKY
∆• ∼= Y K . This follows by the following string of isomorphisms

MKY
∆• ∼= lim

∆n→K

(
Y ∆•

)
n

∼= lim
∆n→K

Y ∆n

∼= Y colim∆n→K ∆n

∼= Y K ,

where the last isomorphism is the coYoneda lemma, and the one before that follows from ad-
jointness. Let f : X → Y be a (trivial) fibration, then for all n ≥ 0 there is a commutative
diagram

X∆n
Y ∆n ×MnY ∆• MnX

∆•

X∆n
Y ∆n ×Y ∂∆n X∂∆n

with the vertical maps isomorphisms. But then it follows from the SM2 that f∆• is a (trivial)
fibration.

Corrolary 4.23. The geometric realization functor | − | : sM→M is left Quillen.

Proof. This follows from Lemma 4.22 and Theorem 3.11.

Note that in particular that by application of Ken Brown’s lemma (that is Theorem 3.10)
this means that geometric realization preserves weak equivalences between Reedy cofibrant ob-
jects.
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5 Derived functors

In this section, we define homotopical categories and derived functors between them.

Definition 5.1. A homotopical category is a category C equipped with a class of maps W such
that

1. All isomorphisms of C are in W.

2. If f, g are composable arrows such that two of f, g, gf are in W, then so is the third.

Remark 5.2. The first property is the same as saying W is a wide subcategory. The second
property is called the 2-of-3 property. Furthermore the maps in W are called weak equivalences.

Remark 5.3. Any category can be considered as a homotopical category with the subcategory
W chosen to be minimal only containing the isomorphisms.

Example 5.4. For any homotopical category C and small category D the category CD can be
considered a homotopical category with weak equivalences given by those natural transformation
in which all the components are natural transformations in C. We call such a weak equivalence
a natural weak equivalence.

Example 5.5. Our main example will be a (simplicial) model category where we consider the
weak equivalences as well the weak equivalences.

Definition 5.6. Suppose C is a homotopical category. Then the homotopy category of C,
denoted HoC is the formal localization of C at W.1

Remark 5.7. The category HoC comes equipped with a canonical localization functor

γ : C→ HoC

Such that we obtain an equivalence

Fun(HoC,D) ' Funwti(C,D)

Where Funwti(−,−) denotes the full sub category of Fun(−,−) spanned by functors sending
weak equivalences to isomorphisms.

Remark 5.8. Normally one should be quite careful when forming localizations of categories as
one could easily run into size issues. For model categories Quillen proves that the homotopy
category of a locally small category is always locally small.

Functors which respect this extra structure are of special interest and for the rest of this
section we will discuss these functors and how to approximate functors by such functors.

Definition 5.9. Let C,D be homotopical categories. A functor F : C→ D is called homotopical
if for all f ∈WC then F (f) ∈WD.

If F is a homotopical functor by the universal property of localization we obtain a unique
functor such that the following diagram commutes

C D

HoC HoD.

F

∃!
1In the sense described in Remark 5.7.
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Definition 5.10. Let F : C→ D be a functor between homotopical categories C and D.

1. A total left derived functor of F is a right Kan extension LF := RanγδF , where γ, δ are
the localization functors corresponding to C,D respectively. I.e

C D

HoC HoD.

γ

F

δ

LF=RanγδF

2. a left derived functor of F is a homotopical functor

LF : C→ D

with a natural transformation λ : LF → F such that (δLF, δλ) is a total left derived
functor of F .

5.1 Derived functors using deformations.

In our discussion of model categories we describe cofibrant objects and cofibrant replacement.
We will now generalize this notion to the setting of homotopical categories.

Definition 5.11. Let C be a homotopical category. A left deformation on C is a functor
Q : C→ C equipped with a natural weak equivalence q : Q→ idC.

We advise the reader to think of a left deformation (Q, q) as a functorial cofibrant replacement
in which for all X ∈ C the comparison maps qX form a natural weak equivalence. Furthermore
we define MQ to be the homotopical category spanned by the objects in the image of Q. We
advise the reader to think of MQ as the category of cofibrant objects.

Remark 5.12. Any left deformation is homotopical by the 2-out-of-3 property of weak equiv-
alences.

Definition 5.13. A left deformation for a functor F : C→ D of homotopical categories is a left
deformation on C such that F is homotopical on MQ.

When we eventually discuss homotopy colimits one of the main results in proving homotopy
invariance of our construction will be the following theorem.

Theorem 5.14. If F : C → D is a functor of homotopical categories and q : Q → idC is a left
deformation for F then FQ = LF is a left derived functor of F .

Proof. Let δ : D → HoD denote the localization of D. We must show that (δFQ, δFq) satisfy
the universal property of a right Kan extension in Fun(HoC,HoD) which by Remark 5.7 is
equivalent to showing it is satisfied in Funwti(C,HoD). Suppose G : C → HoD is homotopical
and γ : G → δF is a natural transformation. Now Q is homotopical thus Qq is a natural
isomorphism. From naturality of γ for all objects c ∈ C we get that

G(c) δFc

GQ(c) δFQ(c)

Gq−1
c

γc

γQc

δFqc
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commute. These are all components of natural transformations hence γ factors through δFQ.
To see uniqueness, suppose that γ factors as

G δFQ δF.
γ′ δFq

Then the restriction γ′Q is uniquely determined. This follows since qQ is a natural weak equiv-
alence, then for objects in C. Now since F is homotopical on CQ it follows that δFqQ is an
isomorphism. Thus we conclude uniqueness of γ′, since by naturality

GQ(c) δFQ2(c)

G(c) δFQ(c)

Gqc

γ′Qc

δFQqc

γ′c

commutes, furthermore the vertical maps are isomorphisms.

Another technical result needed to prove homotopy invariance is the following lemma.

Lemma 5.15. Let (Q, q) be a left deformation on C and F : C → D a functor of homotopical
categories. If

1. FQ is homotopical

2. FqQ : FQ2 → FQ is a natural weak equivalence

then (Q, q) is a left deformation for F .

Proof. Let f : c→ c′ be a weak equivalence in MQ by definition there exists x, y ∈M such that
Q(x) = c and Q(y) = c′. Now consider Q(f) : Q2(x)→ Q2(y). This is again a weak equivalence,
thus FQ(f) is a weak equivalence by the first assumption. Now by the 2 out of 3 property and
the second assumption we get that F (f) is a weak equivalence.

We would like homotopy colimits to be a good, homotopy invariant, approximation to the
colimit functor. Therefore, these two results allow to form a strategy form defining homotopy
colimits which should behave nicely with respect to homotopical properties of a category. The
strategy will be that for every small category D to define a left deformation for the colimit
functor

CD colim−−−→ C
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6 The Bar Construction

During the section we discuss two sided simplicial bar construction and define the functor tensor
product.

6.1 The functor tensor product

We will now define the functor tensor product.

Definition 6.1. Let −⊗− : V×M→M be bifunctor and F : D→M, G : Dop → V be functors.
The functor tensor product of F and G is the coend

G⊗D F :=

∫ d∈D
G(d)⊗ F (d)

Many of the results from the section on Kan extensions can be rephrased in terms of functor
tensor products. We will not spend time on explaining this, but we will make an effort to note
when we use the results in this form.

Remark 6.2. In the situation of Definition 4.9 geometric realization can be expressed as the
tensor product

∆• ⊗�op X•.

6.2 The bar construction

Construction 6.3 ([Rie14]). Suppose M is an simplicially enriched tensored category and D is
a small category. If G : Dop → sSet and F : D → M are functors, then the two sided simplicial
bar construction B•(G,D, F ) is the simplicial object in M defined as

Bn(G,D, F ) =
∐

d : [n]→D

G(d(n))⊗ F (d(0)).

Now for α : [n]→ [m] we want to produce a map

Bm(G,D, F )→ Bn(G,D, F ).

Suppose we are given d′ : [m]→ D then d′α defines a functor [n]→ D. This induces a map

G(d′(m))⊗ F (d′(0)) −→ G(d′α(n))⊗ F (d′α(0))

since there exists unique maps

d′(0)→ d′α(0)

d′α(n)→ d′(m).

Take this to be the map induced by α.

Definition 6.4 ([Rie14]). In the notation of Construction 6.3 the bar construction is the
geometric realization of the simplicial object defined in Construction 6.3

B(G,D, F ) := |B•(G,D, F )|

The following result gives some intuition to why the two sided simplicial bar construction
should be related to colimits.

21



Proposition 6.5. The colimit
colim

�op
B•(G,D, F )

is given by the functor tensor product G⊗D F

Proof. The inclusion (
[1] [0]

d0

d1

)
−→ �op

Is final thus by [Mac13, Thm. IX.3.1] the first of the following isomorphism hold

colim
�op

B•(G,D, F ) ∼= coeq

 ∐
f : a→b∈D

G(b)⊗ F (a)−→−→
∐
a∈D

G(a)⊗ F (a)


∼=
∫ d∈D

G(d)⊗ F (d)

∼= G⊗D F.

Remark 6.6. In particular we get that

colim
�op

B•(∗,D, F ) ∼= ∗ ⊗D F ∼= colim
d∈D

F (d).

This allows us to think of B•(∗,D, F ) as a replacement of F by a simplicial object in M.
Which should be our first indication that the bar construction B(∗,D, F ) should be in someway
related to hocolimF . In fact if F is pointwise cofibrant it is indeed the case that hocolimF ∼=
B(∗,D, F ).

Remark 6.7. The objects B(D(−, d),D, F ) ∈M depend functorially on d ∈ D we will denote
the functor D→M which on objects is given by d 7→ B(D(−, d),D, F ) by B(D,D, F ). Varying
F this allows us to obtain an functor

B(D,D,−) : MD →MD

Lemma 6.8. For G : Dop → sSet the following isomorphism hold:

G⊗D B(D,D, F ) ∼= B(G,D, F )

Proof. This follows from the following string of isomorphisms:

G⊗D B(D,D, F ) =

∫ d∈D
G(d)⊗B(D(−, d),D, F )

∼=
∫ d∈D

G(d)⊗

∫ n∈�

∆n ⊗
∐

d : [n]→D

D(dn, d)⊗ F (d0)


using that K ⊗ − : M → M is a left adjoint and thus commutes with coends, and applying
Fubini’s theorem for coends we get:

∼=
∫ n∈�

∆n ⊗

∫ d∈D
G(d)⊗

 ∐
d : [n]→D

D(dn, d)⊗ F (d0)


∼=
∫ n∈�

∆n ⊗

∫ d∈D ∐
d : [n]→D

G(d)⊗D(dn, d)⊗ F (d0)

 .
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Now since coends commutes with colimits we get that

∼=
∫ n∈�

∆n ⊗

 ∐
d : [n]→D

(∫ d∈D
G(d)×D(dn, d)

)
⊗ F (d0)


∼=
∫ n∈�

∆n ⊗

 ∐
d : [n]→D

G(dn)⊗ F (d0)


= B(G,D, F )

where the last isomorphism is the coYoneda lemma.

There is a similar statement about the 3rd variable of the bar construction, replacing con-
travariant representable functors with covariant ones.
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7 Homotopy Colimits

In this section we will give a construction of the left derived functor of colim: MD → M, for
some small category D, in the case where M is a simplicial model category. Furthermore we
give a model for the homotopy colimit of a functor F : D → M. For the entire section let M

be a simplicial model category, equipped with a cofibrant replacement Q : M → M and D a
small category. In particular we can consider MD a homotopical category with levelwise weak
equivalences as weak equivalences.

Lemma 7.1. If F : D→M is pointwise cofibrant then the two sided simplicial bar B•(∗,D, F )
is Reedy cofibrant.

Proof. We show that for all n the canonical map LnB•(∗,D, F )→ Bn(∗,D, F ) is a cofibration.
The n-th latching object is given by the colimit

colim
[n]→[k]

Bk(∗,D, F ).

For n ≥ 2 the indexing category has a cofinal subcategory given by the full subcategory restricted
to k = n− 1 and k = n− 2 (this is shown in [Hir09, Prop. 15.2.6]) hence

LnB•(∗,D, F ) ∼= colim
[n]→[n−1]

[n]→[n−2]

B•(∗,D, F )|n−1,n−2

This is exactly ∐
d∈(N(D)d)n

F (d0)

where (N(D)d)n is the degenerate n-simplicies in N(D). Thus since F is pointwise cofibrant
and cofibrations are closed under coproducts and pushouts the map

LnB•(∗,D, F )→ Bn(∗,D, F )

is a cofibration.

Remark 7.2. Since | − | : sM→M is left Quillen (see Corrolary 4.23) it follows that for any
natural weak equivalence F ∼−→ F ′, with F, F ′ pointwise cofibrant that B(∗,D, F )

∼−→ B(∗,D, F ′)
is a weak equivalence.

Remark 7.3. Since tensoring with a simplicial sets preserves cofibrant objects it follows that
for any functor G : Dop → sSet and F : D → M pointwise cofibrant then B•(G,D, F ) is Reedy
cofibrant.

Theorem 7.4. The functor B(G,D,−) is homotopical on the full subcategory of MD spanned
by pointwise cofibrant functors. In particular B(G,D, Q−) is homotopical.

Proof. This follows from Lemma 7.1, Remark 7.2 and Remark 7.3.

The goal is now to prove that B(D,D, Q−) is a left deformation on MD and that the natural
weak equivalence

B (D,D, QB(D,D, Q−))→ B(D,D, Q−)

is preserved by colimD : MD →M. Since by Lemma 5.15 this would imply that this is in fact
a left deformation for colimD.

Proposition 7.5. The simplicial object B•(D(−, d),D, F ) admits an augmentation and extra
degeneracy such that the augmentation is a retract of the extra degeneracy.
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Proof. Let B−1(D(−, d),D, F ) := F (d). For d′ ∈ D consider the map

D(d′, d)→M(F (d′), F (d))

given by f 7→ F (f). The transpose f̄ : D(d′, d)⊗ F (d′)→ F (d) defines a map

B•(D(−, d),D, F )
r−→ F (d)

where we consider F (d) a constant simplicial object in M. Now to define the extra degeneracy
for n ≥ 0 consider the map Bn(D(−, d),D, F )→ Bn+1(D(−, d),D, F ) induced by inserting idd
at the beginning of any n-simplex d : [n]→ D with d0 = d. For n = −1 consider the map

F (d) ∼= ∗ ⊗ F (d)
(idd)∗⊗F (d)−−−−−−−→ D(d, d)⊗ F (d)

id−→
∐
d′

D(d′, d)⊗ F (d′) = B1(D(−, d),D, F )

It is clear from how we have defined things that

B−1 (D(−, d),D, F )
s0−→ B•(D(−, d),D, F )

r−→ B−1(D(−, d),D, F )

is the identity.

Remark 7.6. Note that r is natural in d, furthermore s0 need not be natural in D. Hence we
get a natural transformation

ε : B(D,D, F )→ F.

Proposition 7.7. The natural transformation ε is a natural weak equivalence.

Proof. This is an application of [Rie14, Corollary 4.5.4] to the augmentation and extra degen-
eracy defined in Proposition 7.5.

Remark 7.8. For the last part of this section we will let εF be the natural weak equivalence
B(D,D, F )

∼−→ F . By naturality we get that

B(D,D, QB(D,D, QF )) QB(D,D, QF )

B(D,D, B(D,D, QF )) B(D,D, QF )

B(D,D,q)

εQB

q

εB

commutes. Hence by the 2-of-3 property colimD εQB is an weak equivalence if and only if
colimD εB is.

Proposition 7.9. If F is pointwise cofibrant, then colimD preserves the weak equivalence

εB : B(D,D, B(D,D, F ))→ B(D,D, F ).

Proof. By naturality we see that the map εB is given by the composition

B(D,D, F )→ B(D,D,D)⊗D F
ε⊗F−−−→→ D⊗ F → F

where we apply that D⊗DF ∼= F by the coYoneda lemma and ε is the weak equivalence obtained
by the extra degeneracy and augmentation defined on

B•(D(−, d′),D,D(d,−))

into D(d, d′). Thus by applying naturality and Lemma 6.8 we get that
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∗ ⊗D B(D,D, B(D,D, F )) ∗ ⊗D B(D,D, F )

∗ ⊗D B(D,D,D)⊗D B(D,D, F ) ∗ ⊗D D⊗D B(D,D, F )

B(∗,D,D)⊗D B(D,D, F ) ∗ ⊗D B(D,D, F )

B(B(∗,D,D),D, F ) B(∗,D, F )

∗⊗DεB

∗⊗Dε⊗DB

ε⊗DB

B(ε,D,F )

commutes. Now the vertical maps are all isomorphisms hence weak equivalence, thus by 2-of-3
it is sufficient for B(ε,D, F ) to be a weak equivalence to prove the statement. This is follows
directly from ε being a weak equivalence and Theorem 7.4.

Putting together the work of this chapter we get the following theorem.

Theorem 7.10 (Theorem 5.1.1 [Rie14]). Let M be a simplicial model category with cofibrant
replacement Q : M→M. Then the pair

B(D,D, Q−) : MD →MD B(D,D, Q−)
εQ−→ Q(−)

q−→ idMD

is a left deformation for colimD : MD → M. In particular colimD admits a left derived functor
L colimD.

Proof. By Proposition 7.9 and Theorem 7.4 we see the pair satisfies the conditions of
Lemma 5.15 hence is a left deformation for colimD. In particular by Theorem 5.14 it follows
that

L colim
D

= colim
D

B(D,D, Q−)

is a left derived functor of colimD : MD →M.

Definition 7.11. If M is a simplicial model category and D is a small category, then we define
the homotopy colimit

hocolim
D

:= L colim
D

as the left derived functor of the colimit functor.

We have now abstractly defined the hocolimD and shows that it satisfies the universal prop-
erty one would expect of it. We will finish end this section with giving a formula for computing
homotopy colimits.

Proposition 7.12. The homotopy colimit is given by

hocolim
D

∼= B(∗,D, Q−)

Proof. By Theorem 7.10 the homotopy colimit is given by the functor colimDB(D,D, Q−).
By applying Lemma 6.8 it follows from straight computation that

colim
D

B(D,D, Q−) ∼= ∗ ⊗D B(D,D, Q−)

∼= B(∗ ⊗D D,D, Q−)
∼= B(∗,D, Q−)

Remark 7.13. In this thesis we have only defined homotopy colimits, but there is of course a
dual notion of a homotopy limit. This can be defined as a right derived functor of the functor
limD : MD →M, which can be constructed in a similar way.
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A Ends and Coends

In this Appendix we will recall basic results on Ends and Coends starting with the definition

Definition A.1. Let H : Cop × C → D be a functor. A cowedge consists of an object X ∈ D

along with maps ωc : H(c, c)→ X for all c ∈ C such that

H(c′, c) H(c′, c′)

H(c, c) X

f∗

f∗

commutes. The coend of H denoted ∫ c∈C
H(c, c)

if it exists, ss an object of D with maps H(c, c) →
∫ c∈C

H(c, c) for all c ∈ C such that for all
f : c→ c′ in C

H(c′, c) H(c′, c′)

H(c, c)
∫ c∈C

H(c, c)

f∗

f∗

commutes universally. I.e. such that
∫ c∈C

H(c′c) is the initial cowedge on H in the evident
category of cowedges on H.

Remark A.2. Here we have adopted the notation usually used when considering representable
functors.

Remark A.3. Additionally there is dual notion of an end. Which we will denote∫
c∈C

H(c, c)

Proposition A.4. C If F,G : C→ D are functors then we have a natural isomorphism∫
c∈C

D(F (−), G(−)) ∼= Nat(F,G)

Proof. Suppose we have a wedge ω : X
·→ D(F (−), G(−)) then for f : c→ c′ we have a commu-

tative square

X D(F (c), G(c))

D(F (c′), G(c′)) D(F (c), G(c′)).

ωc

ωc′ f∗

f∗

Hence for any x ∈ X we get that G(f)ωc(x) = ωc′(x)F (f) i.e a naturality square

F (c) G(c)

F (c′) G(c′).

ωc(x)

F (f) G(f)

ωc′ (x)
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This defines a function X → Nat(F,G) assigning the natural transformation ω(x), with com-
ponents ωc(x), for each x ∈ X. It is clear that Nat(F,G) can be a used to define a wedge on
D(F (−), G(−)). Checking that Nat(F,G) is terminal among such wedges is just a matter of
checking uniqueness of X → Nat(F,G).

To state some basic results on coends we will first prove the following characterization.

Proposition A.5. Let D be a category with coproducts and coequalizers, C a small category and
H : Cop × C→ D be a functor, then

∫ c∈C
H(c, c) ∼= coeq

 ∐
f : c→c′

H(c′, c) ⇒
∐
c∈C

H(c, c)


with the parallel morphisms induced by the maps icf∗ and ic′f∗, where i denotes the injections.

Proof. We will proceed by showing that these satisfy the same universal property. There is a
canonical map ∐

c∈C
H(c, c)→

∫ c∈C
H(c, c).

Now since the following diagram is commutative

H(c′, c) H(c′, c′)

∐
f : c→c′

H(c′, c)
∐
c∈C

H(c, c)

∫ c∈C
H(c, c)

H(c′, c) H(c, c)

f∗

f∗

we get a induced map

coeq

 ∐
f : c→c′

H(c′, c) ⇒
∐
c∈C

H(c, c)

 −→ ∫ c∈C
H(c, c).

We will now produce a map in the opposite direction. From which showing that this pair gives
an isomorphism is standard. We will denote the composite

H(c, c)→
∐
c∈C

H(c, c)→ coeq

 ∐
f : c→c′

H(c′, c) ⇒
∐
c∈C

H(c, c)


by kc. This defines a cowedge, since the last map coequalizes the two maps. Hence we get the
intended map. Finishing the proof.

Remark A.6. There is a dual result for ends.

This result now gives us the following results

Theorem A.7. We have

1. (Co)continuous functors preserve (co)ends.
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2. Hom functors take ends to ends in the covariant variable and coends to ends in the con-
travariant variable.

3. There exists a Fubini’s theorem for (co)ends i.e if we are given a functor H : Dop ×D ×
Cop × C→ P then the following isomorphisms hold∫ (d,c)∈D×C

H(d, d, c, c) ∼=
∫ d∈D ∫ c∈C

H(d, d, c, c) ∼=
∫ c∈C ∫ d∈D

H(d, d, c, c)

and similarly for ends.

We omit the proof, but this can all be found in [Mac13] or [Lor15].
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