
MONADICITY OF THE BOUSFIELD-KUHN FUNCTOR

MARIUS VERNER BACH NIELSEN

These notes are from my talk on ”Monadicity of the Bousfield-Kuhn functor.” in the course
”Topics in Algebraic Topology (2020/2021)” at University of Copenhagen.

The goal of the talk is to construct the Bousfield-Kuhn functor

Φ: An∗ −→ SpT (n)

and prove that (a modification of the above functor) gives us an monadic adjunction

SpT (n)

Θ // Anvn
∗ .

Φ
oo

This witnesses an equivalence
Anvn
∗ ' AlgΦΘ

(
SpT (n)

)
and in fact Heuts prove in [Heu18, Thm. 2.6] that

AlgΦΘ

(
SpT (n)

)
' Lie

(
SpT (n)

)
with the right hand side being the∞-category of T (n)-local spectral Lie algebras. For n = 0 this
recovers Quillens classical result that the rational homotopy theory of simply connected spaces
is equivalent to the homotopy theory of rational Lie algebras.

For the entirety of these notes we fix a prime p and let An and Sp denote the ∞-categories
of p-local anima and p-local spectra respectively.

1. The ∞-category of vn-periodic anima

In this section we will define vn-periodic homotopy groups and give particularly nice model for
the Dwyer-Kan localization of the∞-category of pointed anima An∗ at vn-periodic equivalences.

Definition 1.1. A finite pointed anima V ∈ Anfin
∗ is of type n if the Morava k-theory vanishes

K(m)∗V ' 0 for m < n and K(n)∗V is nonzero. A map vn-self map is a map vn : ΣdV → V
such that

K(m)∗vn
is an isomorphism for m = n and is nilpotent else.

By a theorem of Hopkins and Smith any anima V of type at least n, admits a vn-self map.
For this talk we will fix a sequence of finite pointed suspension anima (Vn)n∈N with Vn of type
n and assume that Vn ∈ τ>kAn∗ implies Vn+1 ∈ τ>kAn∗.

Notation. We consider the afore mentioned sequence of anima and denote by

dn := min(k ∈ N0 : πk(Vn) 6= 0)

the level of the lowest non-zero homotopy group of Vn.

Definition 1.2. Let X ∈ An∗ be a pointed anima. The vn-periodic homotopy groups of X are
given by the colimit

v−1
n π∗(X,V ) := colim

(
π∗Map∗(Vn, X)→ π∗Map∗(Σ

dVn, X)→ . . .
)
.

Note that the vn-periodic homotopy groups are independent, up to unique isomorphism of
vn-self maps. The vn-periodic homotopy groups of a space X are canonically isomorphic to the
stable homotopy groups of a spectrum ΦVn .
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2 MONADICITY OF THE BOUSFIELD-KUHN FUNCTOR

Definition 1.3. The vn-telescopic functor ΦVn : An∗ → Sp is the functor given by

ΦVn(X) := colim
(

Σ∞Map∗(Vn, X)→ Σ∞−dMap∗(Vn, X)→ . . .
)
.

A map f : X → Y in An∗ is a vn-periodic equivalences if ΦVn(f) is an equivalence.

Remark 1.4. These functors are independent of Vn and vn-self map up to contractible choice.

These functors will be the focus section two, however for now they will serve to define periodic
equivalences. We will now move towards constructing an ∞-category of vn-periodic anima.

Definition 1.5. Let Lf
nτ>1An∗ denote the Bousfield localization of simply connected pointed

anima τ>1An∗ at the map Vn+1 → ∗ and let

Lf
n : τ>1An∗ → τ>1An∗

denote the corresponding localization functor.

Remark 1.6. Note that theres a natural equivalence Lf
n(τ>dn+1) ' τ>dn+1

(
Lf
n

)
.

Theorem 1.7 (Theorem 4.6 [Bou01]). If X ∈ An∗ is a pointed anima, then the vi-periodic
homotopy groups of Lf

nX are given by

v−1
i π∗(L

f
nX,Vi) '

{
v−1
i π∗(X,Vi) i ≤ n

0 else.

Lemma 1.8. The natural unit transformation Lf
n−1 → Lf

nL
f
n−1 is an equivalence.

This implies that any Lf
n-local anima is Lf

n−1-local. In particular we get a map

Lf
n → Lf

n−1.

Definition 1.9. Consider the map Lf
n → Lf

n−1 and let Mf
n denote fiber.

We choose the letter M to indicate the monochromatic level n. From Bousfields theorem it
follows that

v−1
i π∗(M

f
nX,Vi) '

{
v−1
n π∗(X,Vn) i = n

0 else

and choose the convention that Mf
0 = Lf

0 .

Definition 1.10. Let Anvn
∗ ⊆ τ>1An∗, be full subcategory of τ>1An∗ spanned by anima of the

form τ>dn+1

(
Mf

nX
)
. We call this the∞-category of vn-periodic anima. We let in : Anvn

∗ → An∗

denote the inclusion and Mn : An∗ → Anvn
∗ the functor given by

X 7→ τ>dn+1

(
Mf

nX
)
.

Theorem 1.11 (Theorem 3.7 [Heu18]). A map φ : X → Y in τ>dn+1 is a vi-periodic equivalence
for all 0 ≤ i ≤ n if and only if τ>dn+1(Lf

nφ) is an equivalence. Furthermore, it is a vn-periodic
equivalence if and only if τ>dn+1(Mf

nφ) is an equivalence.

Lemma 1.12. There is a natural equivalence Mnin ' idAnvn
∗ .

Proof. This is clear for n = 0. So assume n > 0 and let X = Mn(Y ) for some Y ∈ An∗. By
definition we have a fiber sequence

Mf
nX → Lf

nX → Lf
n−1X

Now, as X is Lf
n-local and dn+1-connected we have that

τ>dn+1(Lf
nX) ' Lf

nX ' X,



MONADICITY OF THE BOUSFIELD-KUHN FUNCTOR 3

so it suffices to prove Lf
n−1X ' ∗. Now we apply τ>dn(Lf

n−1) to the fiber sequence

Mf
nY → Lf

nY → Lf
n−1Y

to get a fiber sequence

τ>dn(Lf
n−1(Mf

nY ))→ τ>dn(Lf
n−1(Lf

nY ))→ τ>dn(Lf
n−1(Lf

n−1Y ))

with the last map being an equivalence. So we have reduced to showing that the map

Lf
n−1X ' τ>dn+1(Lf

n−1(Mf
nY ))→ τ>dn(Lf

n−1(Mf
nY ))

is an equivalence. By [Heu18, Theorem 3.7] it suffices to show that this is an vi-periodic equiv-
alence for all 0 ≤ i ≤ n. However this is clear as their homotopy groups only vary in finitely
many degrees. �

Corollary 1.13. A map φ : X → Y in Anvn
∗ is an equivalence if and only if it is a vn-periodic

equivalence.

Proof. This follows from Lemma 1.12 and [Heu18, Theorem 3.7]. �

This is allows us to prove our main theorem for this section.

Theorem 1.14. The ∞-category Anvn
∗ is the Dwyer-Kan localization of An∗ at the vn-periodic

equivalences.

Proof. We have to show that for any ∞-category C the functor

i∗n : Funvn(An∗,C)→ Fun(Anvn
∗ ,C),

is an equivalence. Here Funvn(An∗,C) denotes the full subcategory of Fun(An∗,C) spanned by
functors taking vn-periodic equivalences to equivalences. Since i∗nM∗n ' (Mnin)∗ we see that
i∗nM

∗
n ' id. Now suppose F : An∗ → C is a functor which takes vn-periodic equivalences to

equivalences. Now for X ∈ An∗ consider the following zigzag of natural vn-periodic equivalences

X ← τ>dn+1(X)→ τdn+1(Lf
nX)← iMX.

If we apply F to this zigzag, we see that M∗i∗ ' id. Which is what we wanted to prove. �

Manifestly, the above result depends on choice of dn+1, but this choice is unique up to a
contractible space of choices.

2. The Bousfield-Kuhn functor

In this section we will sketch the construction of the Bousfield-Kuhn functor from the tele-
scopic functors and state our main technical ingredient for proving monadicity of the Bousfield-
Kuhn functor. The section is based primarily on the Thursday seminar on Unstable chromatic
homotopy theory and [Kuh+08].

Recall that if V is a finite pointed anima of type at least n with a vn-self map v : ΣdV → V ,
then we can construct a functor φV : An∗ → Sp. This functor is in fact functorial in V and v
and we use this for our construction.

Construction 2.1 (The Bousfield-Kuhn functor). Let t > 0 be a positive integer and let Ct be
the full subcategory of the pullback

C̄t Fun(∆1,An∗)

An∗ An∗ ×An∗

s×t
Σt×id

spanned by pairs (V, v) where V is of type at least n and v : ΣtV → V is a vn-self map. From
this we obtain a functor

Φ• : Cop
t → Fun(An∗,Sp)

given on objects by (V, v) 7→ ΦV . Now for every pair of positive integers t and s there exists a
triangle
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C
op
t C

op
st

Fun(An∗,Sp)

Φ• Φ•

such that the horizontal functor is the above one. This functor is given objects (V, v) 7→ (V, vs)
where vs is the composite

ΣstV → Σ(s−1)tV → · · · → ΣtV → V.

Furthermore, (V, v) 7→ (ΣV,Σ(v)) determines a functor such that exists a triangle witnessing
that

C
op
t C

op
t

Fun(An∗,Sp)

Φ•

Σ

ΩΦ•

commutes. Now consider the diagram1

C1! → C2! → . . .

where the functor C(m−1)! → Cm! is given on objects by (V, v) 7→ (ΣV,Σ(vm)). We let C′ denote
the colimit of this diagram. By the above we get a functor

C′ → Fun(An∗,Sp).

In the Thursday seminar, Lurie proves that

C′ ' Spfin
≥n

where the right hand side is the ∞-category of finite spectra of at least type n. Now let F
denote the right Kan extension of the functor Spfin

≥n → Fun(An∗,Sp) which takes V ∈ Spfin
≤n to

ΦV . Along the inclusion
Spfin
≤n ↪→ Spfin.

Here ΦV := ΣtΦW where W is a type n anima such that ΣtV ' Σ∞W .

Definition 2.2. Let C′ and
F :

(
Spfin

)op
→ Fun(An∗, Sp)

be as in Construction 2.1. The Bousfield-Kuhn functor is the functor

Φ := F (S) : An∗ → Sp.

Here S denotes the sphere spectrum.

Note that since right Kan extensions are given pointwise we obtain a formula for X ∈ An∗,
the Bousfield-Kuhn functor is given on X by

Φ(X) ' lim
E→S

ΦE(X)

Where the indexing category is the slice category Spfin
≥n/S.

Theorem 2.3 (Thm. 1.1 [Kuh+08]). The Bousfield-Kuhn functor satisfies the following prop-
erties

(1) The functor Φ: An∗ → Sp takes values in T (n)-local spectra.
(2) If V is a type n anima then for all X ∈ An∗

Φ(X)V ' ΦV (X).

(3) There is a natural equivalence

Φ(Ω∞X) ' LT (n)X.

1Note that the spine inclusion I → ∆n into the n-simplex is Joyal equivalence. So we really do get a diagram
in Cat∞
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The above theorem will work as our major technical result for the rest these notes.

Remark 2.4. Note that Theorem 2.3 (3) tells us that the T (n)-localization only depends on
the underlying anima!

Lemma 2.5 (Thursdays seminar lecture 5 Prop. 13). The vn-periodic telescopic functor

ΦV : An∗ → Sp

takes values in T (n)-local spectra.

Lemma 2.6. The vn-periodic telescopic functor ΦV : An∗ → SpT (n) factors through

M : An∗ → Anvn
∗ .

Proof. This follows from applying the universal property of Dwyer-Kan localization. �

Corollary 2.7. The Bousfield-Kuhn functor Φ: An∗ → SpT (n) factors through

M : An∗ → Anvn
∗ .

Proof. This follows from applying Theorem 2.3.2 and Lemma 2.6. �

Notation. We will abuse notation and denote the functor

Anvn
∗ → SpT (n)

from Corollary 2.7 by Φ and call it the Bousfield-Kuhn functor.

Theorem 2.8. The Bousfield-Kuhn functor Φ: Anvn
∗ → SpT (n) admits a left adjoint

Θ: SpT (n) → Anvn
∗ .

Proof. We want to show that the functor

X 7→ Map(Y,Φ(X))

is representable. Now as Φ(X) ' limE→S ΦE(X) it suffices to show that the functor

X 7→ Map(Y,ΦV (X))

is representable, where V is a type n anima with vn-self map ΣtV → V . Now as Sp is generated
under colimits by ΣktS for k ∈ Z it suffices to show that the functor

X 7→ Map(ΣktS,ΦV (X))

is representable. Now since ΦV (X) ' ΩtΦV (X) this reduces to showing that

X 7→ Map(S,ΦV (X)) ' Ω∞ΦV (X)

is representable. So we are reduced to prove that the functor

X 7→ colim(Map(V,X)→ Map(ΣtV,X)→ . . . )

is representable as a functor Anvn
∗ → An∗ is representable. Now since X ∈ Anvn

∗ the diagram
above is eventually constant so it suffices to prove X 7→ Map(ΣktV,X) is representable. This
we know to be representable by Lf

n(ΣktV ). This completes the proof. �

3. Monadicity of the Bousfield-Kuhn functor

In this section we prove the main theorem of these notes, namely that the Bousfield-Kuhn
functor witnesses that Anvn

∗ is mondadic over SpT (n). First we recall the Barr-Beck-Lurie theo-
rem.

Theorem 3.1 (Thm. 4.7.0.3 [Lur17]). Suppose a functor G : D → C admits a left adjoint
F : C → D where D admits geometric realizations of simplicial objects. Suppose the following
are satisfied

(1) the functor G is conservative,
(2) the functor G preserves geometric realizations of simplicial objects.

In this situation D is monadic over C via the monad GF .
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Following the strategy provided by the Barr-Beck-Lurie theorem and Theorem 2.8 we will
now be able to prove our main theorem.

Theorem 3.2. The Bousfield-Kuhn functor witnesses that Anvn
∗ is monadic over SpT (n).

Proof. We prove the two assumptions in the Barr-Beck-Lurie theorem Theorem 3.1 are satisfied
when Φ = G and Θ = F .

For (1) if f : X → Y is a map in Anvn
∗ such that Φ(f) is an equivalence, then Φ(f)V is

an equivalence. So by naturality we get that ΦV (f) is an equivalence. So f is an vn-periodic
equivalence.

For (2) let X• ∈ (Anvn
∗ )�op be a simplicial object in Anvn

∗ . We wish to show that the canonical
map

|Φ(X•)| −→ Φ(|X•|)
is an equivalence. Now since Φ takes value in T (n)-local spectra it suffices to show that

|Φ(X•)|V → Φ(|X•|)V ' ΦV (|X•|)
is an equivalence for any finite type n anima V . By assumption V is finite so we have equivalences

|Φ(X•)|V ' |Φ(X•)
V | ' |ΦV (X•)|.

From this we are reduced to showing that ΦV : Anvn
∗ → SpT (n) preserves geometric realizations.

By [Heu18, Lemma 3.17] the inclusion

Anvn
∗ ↪→ Lf

nAn∗

preserves colimits and colimits in Lf
nτ>dn+1An∗ are computed by the formula

colim
I

F ' Lf
n

(
colim

I
iF

)
From this we conclude that |X•| ' Lf

n(|i(X•)|). Now the canonical transformation id→ Lf
n is a

vn-periodic equivalence so it suffices to show

ΦV : τ>dn+1An∗ → SpT (n)

preserves geometric realizations. Now as Σ∞ preserves colimits it suffices to show that

Map(Vn,−) : τ>dn+1An∗ → An

preserves geometric realizations. This now follows by induction on skeleton of Vn and the
assumption that conn(Vn) ≤ conn(Vn+1). A proof is also given in [Eld+19, Prop 4.2].

As desired we conclude from the Barr-Beck-Lurie theorem that

Anvn
∗ ' AlgΦΘ(SpT (n)).

�
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