
INTRODUCTION TO STABLE ∞-CATEGORIES

MARIUS VERNER BACH NIELSEN

These notes are from my talk on ”Introduction to Stable ∞-categories.” in the course ”Topics
in Algebraic Topology (2020/2021)” at University of Copenhagen.

1. Foundations

We will spend this section on defining stable∞-categories and prove basic results about these.
Recall that an object x ∈ C is final if MapC(y, x) ∈ pt for all y ∈ C and that it is initial if it

is final in Cop.

Definition 1.1. Let C be an ∞-category. An object 0 ∈ C is a zero object if it is both initial
and final. In this case we say C is pointed.

Remark 1.2. This implies that there is a distinguished element

X → 0→ Y

in homhC(X,Y ) for all X,Y ∈ C.

Definition 1.3. Let C be a pointed ∞-category. A functor σ ∈ Fun(∆1 ×∆1,C) is an triangle
if it is of the form

X Y

0 Z

where 0 is a zero object of C. The triangle σ is a fiber sequence if it is a pullback square,
cofiber sequence if it is a pushout square and bifiber sequence if it is both. We say that C admits
(co)fibers if any map f : X → Y in C has a (co)fiber.

We note that a triangle comes with the information of three objects A,B and C, to com-
poseable maps f : A→ B and g : B → C and a nullhomotopy gf ' 0, where 0 denotes the zero
map from A to C.

Notation. We will often abuse notation and say that

X → Y → Z

is a triangle/fiber/cofiber sequence.

Definition 1.4. An ∞-category C is stable if
(1) the ∞-category C is pointed.
(2) the ∞-category C admits both fibers and cofibers.
(3) A triangle X → Y → Z is a fiber sequence if and only if it is a cofiber sequence.

We will now prove basic properties of stable ∞-categories.

Theorem 1.5. If C is a stable ∞-category, then C admits finite limits and colimits.

Proof. Note that by [Lur09, Corollary 4.4.2.4] since C is pointed it suffices to show that finite
pullbacks and pushouts exists. We consider a diagram
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X Z

Y

f

g

first form the fiber of f to get a diagram

fib(f) X Z

0 Y

i

f

g

and then form the cofiber of gi, to get a diagram

fib(f) X Z

0 Y cofib(gi).

i

f

g

In this diagram the outer square is a pushout, and since C is stable, so is the left square. Hence
by [Lur09, Lemma 4.4.2.1] it follows that the left square is a pushout. One similarly shows that
finite pullbacks exists. �

Theorem 1.6. If C is a pointed ∞-category which admits fibers and cofibers, then there exists
adjoint functors

Σ: C � C : Ω

which on objects are given by Σ(X) = cofib(X → 0) and Ω(X) = fib(0→ X). Furthermore if C
is stable then these functors are inverse equivalences.

Proof. We will only produce the functor Σ: C→ C. The loop functor is produced in an analogous
way.

Let MΣ ⊆ Fun(∆1 ×∆1,C) denote the full subcategory spanned by pushout diagrams of the
form

X 0

0′ Z,

where 0 and 0′ are zero objects in C. Now consider Λ2
0 ⊆ ∆1 ×∆1 and let LΣ ⊆ Fun(Λ2

0,C) be
the full subcategory spanned by diagrams of the form

X 0

0 .

The restriction functor Fun(∆1×∆1,C)→ Fun(Λ2
0,C) restricts to a functor MΣ → LΣ, [Lur09,

Prop. 4.3.2.15] shows that this map is a trivial Kan fibration. Similarly it follows from [Lur09,
Prop. 4.3.2.15] the map LΣ → C given by evaluation at the initial vertex is trivial Kan fibration.
So we get a trivial Kan fibration

MΣ → LΣ → C

which admits a section s : C→MΣ. There for we can construct sigma to be the composite

C
s−→MΣ i−→ Fun(∆1 ×∆1,C)

ev(1,1)−−−−→ C

where i is the inclusion and ev(1,1) is evaluation at the final vertex of ∆1 ×∆1.
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We will not show that the functors Σ and Ω are adjoint, but we will construct the unit and
counit of the adjunction. We note that since the mapping space functors are left exact (in fact
the preserve all limits) it follows that

MapC(ΣX,Y ) ' ΩAnMapC(X,Y ) ' MapC(X,ΩY ).

Furthermore, forming the suspension of X we get that

X 0

0 ΣX

is a pushout diagram, and thus by commutativity we get a map X
ηX−−→ ΩΣX, similarly we

obtain a map ΣΩX
εX−−→ X. These form the counit and unit of adjunction this is [Lur17, Remark

1.1.2.8].
Finally if C is stable, then η and ε are equivalences, so Σ and Ω are mutual inverses. �

Theorem 1.7 ([Lur17], Thm. 1.4.2.11). Let C be a pointed ∞-category which admits finite
limits and colimits. Then

(1) If Σ is fully faithful, then every pushout square is a pullback square.
(2) If Ω is fully faithful, then every pullback square is a pushout square.
(3) If Ω is an equivalence, then C is stable.
(4) If Σ is an equivalence, then C is stable.

Definition 1.8. If C and D are stable ∞-categories, then a functor F : C → D is exact if it
preserves fiber sequences

Recall that a functor F : C→ D is left exact if it commutes with finite limits. Likewise, it is
left exact if it commutes with finite colimits.

Notation. If C and D are ∞-categories we denote by

FunLex(C,D)

the full subcategory of Fun(C,D) spanned by left exact functors. Similarly we denote by
FunRex(C,D) the full subcategory spanned by right exact functors.

Proposition 1.9 ([Lur17], Prop. 1.1.4.1). If C and D are stable ∞-categories and F : C → D

is a functor, then the following are equivalent
(1) the functor F is exact.
(2) The functor F is left exact, that is commutes with finite limits.
(3) The functor F is right exact, that is commutes with finite colimits.

2. Stabilization

The goal for this section is to describe stabilization a procedure which takes in an∞-category
and produces a stable ∞-category.

Definition 2.1. Let C and D be ∞-categories and F : C→ D be a functor. Then we say that
(1) the functor F is reduced if it preserves final objects.
(2) The functor F is excisive it it takes pushout squares in C to pullback squares in D.

Notation. We let Fun∗(C,D),Exc(C,D) and Exc∗(C,D) denote the full subcategories of Fun(C,D)
spanned by reduced, excisive and excisive reduced functors respectively.

Lemma 2.2. If C is a small pointed ∞-category with finite colimits and D is an ∞-category
with finite limits. Then Exc∗(C,D) is pointed and admits finite limits.
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Proof. Since D has finite limits, it follows by [Lur09, Cor. 5.1.2.3] that Fun(C,D) also has. Now
Exc∗(C,D) is closed under limits in Fun(C,D) and the inclusion

Exc∗(C,D) ↪→ Fun(C,D)

is fully faithfull, and thus reflects limits, it follows that Exc∗(C,D) has finite limits.
It remains to show that Exc∗(C,D) is pointed. We consider X : C → D which is constant

on the final object ∗ ∈ D. Clearly X is final, so it remains to show that it is initial. To do
this we will show that it is initial in the ∞-category of reduced functors from C to D. Let
Y ∈ Fun∗(C,D). Since C is pointed, D has C-indexed limits which are computed by evaluating
functors on a zero object 0 ∈ C. It follows that

Map(X,Y ) ' MapD(∗, lim
C
Y )

' MapD(∗, Y (0))

' MapD(∗, ∗)
' pt.

Here the second to last equivalence follows from Y being reduced. So it follows that X initial
in Fun∗(C,D) and hence in Exc∗(C,D). �

Theorem 2.3. If C is a small pointed ∞-category with finite colimits and if D is an ∞-category
with finite limits, then Exc∗(C,D) is stable.

Proof. By Theorem 1.7 and Lemma 2.2, it suffices to prove that Ω: Exc∗(C,D)→ Exc∗(C,D) is
an equivalence. Consider the functor S : Fun(C,D) → Fun(C,D) given by precomposition with
Σ: C → C. It restricts to an endofunctor on Exc∗(C,D). We let F ∈ Exc∗(C,D) and consider
the canonical map

F (X)→ ΩF (ΣX).

Since F is excisive and reduced this map is an equivalence for all X ∈ C. Hence by [Lan20,
Theorem 8.6] ΩE is an equivalence, so Exc∗(C,D) is stable. �

Definition 2.4. Let An denote the∞-category of anima and let An∗ denote the∞-category of
pointed anima. We define the ∞-category of finite anima Anfin to the smallest full subcategory
of An closed under finite colimits containing the point pt and Anfin

∗ denote the ∞-category of
finite pointed anima.

Remark 2.5. The ∞-category of finite anima Anfin is essentially small and has the following
universal property. If D has finite colimits then

FunRex(Anfin,D)
evpt−−→ D

is an equivalence. This follows from [Lur09, Remark 5.3.5.9] and [Lur09, Prop. 4.3.2.15]

Definition 2.6. If C be an ∞-category with finite limits. Then the ∞-category of spectrum
objects in C is Exc∗(Anfin

∗ ,C).

Definition 2.7. The ∞-category of spectra Sp is Exc∗(Anfin
∗ ,An).

Corollary 2.8. If C be an ∞-category with finite limits, then the ∞-category Sp(C) is stable.

Definition 2.9. Let C be an ∞-category with finite limits, then the infinite delooping functor
is the functor Ω∞ : Sp(C)→ C given by evaluation at S0.

Theorem 2.10. Let C be an ∞-category with finite limits, then the following are equivalent
(1) C is stable,
(2) Ω∞ : Sp(C)→ C.

Proof. Clearly (2) implies (1). Assume that C is stable and let f : Anfin → Anfin
∗ be left adjoint

to the forgetful functor U : Anfin
∗ → Anfin given by adding a disjoint base point. Furthermore
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let Exc′(Anfin,C) denote the full subcategory of Fun(Anfin,C) spanned by the excisive functors
which carry the point pt to a final object in C. By [Lur17, Lemma 1.4.2.19] the functor

Sp(C)
f∗−→ Exc′(Anfin,C)

Is an equivalence. Furthermore, by Remark 2.5 we get that evaluation at a point is an equiva-
lence, so we get a commutative triangle

Sp(C) Exc′(Anfin,C)

C

f∗

Ω∞ ev∗

in which two of the three are equivalences, so Ω∞ : Sp(C)→ C is an equivalence. �

Corollary 2.11. If C is a small pointed∞-category with finite colimits and if D is an∞-category
with finite limits, then Ω∞ : Sp(D)→ D induces an equivalence

Exc∗(C, Sp(D))
(Ω∞)∗−−−−→ Exc∗(C,D).

Proof. This follows from verifying that

Exc∗(C, Sp(D)) ' Sp(Exc∗(C,D))

and applying the previous theorem. �

Corollary 2.12. If C is a small stable ∞-category and D is an ∞-category with finite limits,
then Ω∞ : Sp(D)→ D induces an equivalence

FunLex(C, Sp(D))
(Ω∞)∗−−−−→ FunLex(C,D).

Proof. If C is stable and D has finite limits then

FunLex(C,D) ' Exc∗(C,D).

So the result follows from the above result. �

This allows us to prove that stable∞-categories are enriched in spectra in the following sense

Theorem 2.13. Let C be a small stable ∞-category. For every X ∈ C there exists a functor
map(X,−) : C→ Sp such that

Ω∞map(X,−) ' Map(X,−).

Proof. We apply Corollary 2.12 to Map(X,−). �

The final theorem of this section will be to identify Sp(C) with sequential spectra in in the
following sense

Theorem 2.14. Let C be a pointed ∞-category with finite limits, then Ω∞ : Sp(C)→ C induces
an equivalence

Sp(C)
∼−→ lim

(
. . .

Ω−→ C
Ω−→ C

)
.

Proof. Let C̄ := lim
(
. . .

Ω−→ C
Ω−→ C

)
. It is easy to see that C̄ is stable. The inclusion CatLex

∞ ⊆
Cat∞ preserves limits so the canonical map G : C̄→ C is left exact. Therefore, it factors as

C̄ C

Sp(C).

G

G′ Ω∞
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Let D be a small stable ∞-category, then Corollary 2.12 implies that the functor

FunLex(D, Sp(C))
(Ω∞)∗−−−−→ FunLex(D,C)

is an equivalence. So it suffices to show that Ω: C→ C induces an equivalence on FunLex(D,C).
Now, D is stable so the conclusion follows. �

Corollary 2.15. If C is presentable, then Sp(C) is an presentable ∞-category.

Proof. By [Lur09, Thm. 5.5.3.18], the inclusion PrR ⊆ Ĉat∞ preserves limits, so C̄ is presentable.
�

In particular this implies that the ∞-category of spectra Sp is presentable. In fact when
restricting to presentable ∞-categories we get the following result.

Theorem 2.16 ([Lur17], Prop. 1.4.4.4 and Cor. 1.4.4.5). If C is an presentable ∞-category and
D is a presentable stable∞-category, then Ω∞ : Sp(C)→ C admits a left adjoint Σ∞+ : C→ Sp(C)
which induces an equivalence

LFun(C,D)
Σ∞+−−→ LFun(Sp(C),D).

where LFun(−,−) denotes the full subcategory of Fun(−,−) spanned by left adjoint functors.

Definition 2.17. Let An be the ∞-category of anima and consider the ∞-category of spectra
Sp. The sphere spectrum, S, is the image of pt ∈ An under Σ∞+ : An→ Sp.

3. Prestable ∞-categories

In this section we will introduce prestable ∞-categories. Under mild conditions prestable
∞-categories can always be seen as the connective part of stable ∞-category.

Definition 3.1. Let C be a pointed∞-category with finite colimits, then the Spanier-Whitehead
category on C is the colimit

SW (C) := colim
(
C

Σ−→ C
Σ−→ C

Σ−→ . . .
)
.

We will study this ∞-category a little before moving on. First note that if In denotes the
n’th spine, then the inclusion In → ∆n is inner anodyne. This is seen in the proof of [Lur09,
Prop. 3.2.1.13]. Now the class of inner anodyne maps is saturated so passing to colimits gives
an inner anodyne map

I∞ → N.
Now by [Lur09, Lem. 2.2.5.2] any inner anodyne map is in particular a Joyal equivalence, so
defining a functor N → Cat∞ is equivalent to giving a sequence of ∞-categories and functors
between consecutive ones. In particular by unstraigthening this functor there is a model for
SW (C), where the objects are pairs (X,n) where X ∈ C and n ∈ Z. Furthermore, using that
∆1 is compact one can see that the mapping spaces in SW (C) is given by

MapSW (C) ((X,n), (Y,m)) ' colim
k

Map(Σk+nX,Σk+mY ).

Note also that the inclusion CatRex
∞ ⊆ Cat∞ preserves colimits, in fact it is closed under colimits

in Cat∞. So the we can compute the colimit in both, and the answer will agree. This also
implies that the canonical map p : C→ SW (C) preserves colimits.

The Spanier-Whitehead category on C is similar to the spectrum objects Sp(C) in C in the
following sense.

Theorem 3.2 (Prop. C.1.1.7 [Lur18]). Let C be a pointed ∞-category with finite colimits, then
(1) the ∞-category SW (C) is stable.
(2) For any stable ∞-category D precomposition with the canonical functor p : C → SW (C)

induces an equivalence

FunRex(SW (C),D)
p∗−→ FunRex(C,D).
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We will now define prestable ∞-categories.

Definition 3.3. Let C be an ∞-category, then we say that C is prestable if
(1) C is pointed and admits finite colimits.
(2) The suspension functor Σ: C→ C is fully faithful.
(3) For every map Z → ΣX there exits an bifiber sequence

Y → Z → ΣX.

Example 3.4. If C be a stable ∞-category with t-structure (C≥0,C≤0), then C≥0 is prestable.
Indeed:

(1) This is clear as C≥0 is a colocalization of C.
(2) This follows from the fact that

C≥0 C

C≥0 C

Σ Σ

commutes.
(3) This is equivalent to C≥0 ↪→ C be closed under extensions, which is an easy check.

Theorem 3.5. If C be an ∞-category, then the following are equivalent
(1) C is prestable and admits finite limits.
(2) C is pointed and admits finite colimits, the canonical map p : C→ SW (C) is fully faithful.

Moreover, SW (C) admits a t-structure (SW (C)≥0, SW (C)≤0) such that SW (C)≥0 is the
essential image of p.

(3) There exists a stable ∞-category D with t-structure (D≥0,D≤0) and an equivalence C '
D≥0.

Proof. Note that (2) implies (3) is trivial and (3) implies (1) is the above example, so it suffices
to prove (1) implies (2).

It is clear from the earlier remark on mapping spaces that p is fully faithful. Now let SW (C)≥0

be the essential image of p and SW (C)≤0 be the full subcategory spanned by objects of the form
Ωnp(c) where c ∈ C is n-truncated. In the sense that is Map(d, c) is n-truncated for all d ∈ C.
We will show that this is a t-structure on SW (C). We verify (i)-(iii) in [Lur17, Def. 1.2.1.1].

(i) Let X ∈ SW (C)≥0 and Y ∈ SW (C)≤0 then X ' p(c) for some c ∈ C and Y ' Ωnp(c′)
for some n-truncated c′ ∈ C. Therefore the following holds

MapSW (C)(X,ΩY ) ' Ωn+1MapSW (C)(p(c), p(c
′))

' Ωn+1MapC(c, c′)

' pt.

(ii) ΣSW (C)≥0 ⊆ SW (C)≥0 since Σp(c) ' p(Σc) for all c ∈ C. To see that ΩSW (C)≤0 ⊆
SW (C)≤0, note that n-truncated object is in particular (n+ 1)-truncated.

(iii) We need to show that for any X ∈ SW (C) there exist a fiber sequence

X ′ → X → X ′′

with X ′ ∈ SW (C)≥0 and X ′′ ∈ SW (C)≤0. Note that X ' Ωnp(c), for some c ∈ C and
consider the cofiber sequence

ΣnΩnc→ c
β−→ c′′.

Since p preserves cofiber sequences,

Ωnp(ΣnΩnc)→ Ωnp(c)
Ωnp(β)−−−−→ Ωnp(c′′)

is a cofiber sequence. But

Ωnp(ΣnΩnc) ' ΩnΣnp(Ωnc) ' p(Ωnc)
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so the left hand term in the cofiber sequence is in SW (C)≥0. Thus it suffices to show
that c′′ is (n − 1)-truncated. We must show that for all d ∈ C any map u : Σmd → c′′

with m ≥ n is nullhomotopic. We consider the following diagram

fib(α) Y Ωnp(c) 0

0 Ωnp(Σmd) Ωnp(c′′) cofib(Ωnp(β)).

α Ωnp(β)

Ωnp(u)

All squares are bicartesian, so in particular,

fib(α) ' Ω(cofib(Ωnp(β))) ' Ωn+1p(cofibβ).

By rotating cofibβ ' Σn+1Ωnc, we get that

fib(α) ' Ωn+1p(cofibβ) ' Ωn+1p(Σn+1Ωnc) ' p(Ωnc).

Now since p is closed under extensions and m ≥ n we get that Y ' p(E) for some E ∈ C.
Using adjointness of Σn and Ωn and fully faithfulness of p, ΣnE into a commutative
diagram

ΣnΩnc ΣnE Σmd

ΣnΩnc c c′′.

u

β

Again using adjointness we see that u factors through

ΣnΩnc→ c
β−→ c′′

so it is nullhomotopic. This completes the proof.
�
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